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Approximate Computing

* Explores the inaccuracy tolerance of applications
* Obtain energy efficiency at the cost of errors

e Several computation can tolerate errors
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Problem Statement

Segmentation fault
Segmentation fault
#binssh: error while loading shared libraries: ® FBs3sETEE

* Uncontrolled errors lead to execution crashes Sy

Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

* Execution crashes cause output data loss  EEEEEEEEEE IS
° Was‘“ng Of Computatlonal efforts ® E(r)rtocrkir%t:;’g]retingJPEGimageﬁle{_Quantizationtable(Jxmwas Cancel
* Reduce energy savings

* All applications have critical data

* Invalid results can be generated
 We need to recover these results



fraction of cache lines with error

Approximate DRAM

Relative energy consumption on memory hierarchy

* Adjusting operational parameters

SRAM L1 Cache
m SRAM L2 Cache

\ = DRAM Main Memory

3%

* Bitflips affect stored data

Adapted from: Yarmand et al. (2019).

. . Error rate of MT47H32M8 on different refresh rates
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Non-Transparent Interfaces

@Approx class Mean {

° Ener_] (Sampson et al.’ 2011) @Precise int length sample;

public float calculate (@Approx int[] nums) {
@Approx float total = 0.0f;

for (QPrecise int i=0; i<length sample; i++)
total += nums|[i];
return total / length sample;
}
}

e Relax (De Kruijf et al., 2012)

int sum (int *list, int len) {
relax (rate) {
int sum = 0;
for (int i=0; i<len; i++)

total += list[i];
recover { retry; }

}

return sum;

}
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Transparent Interfaces

* Act based on general behavior of applications

e Crash Skipping (Verdeja Herms & Li, 2019) ‘ ‘ [j[>

* Replaces instructions that would crash execution by a “nop”

load $a, S$rl

 AXRAM (Fabricio Filho et al., 2020) l

* Protects common critical data regions Is $r1 a valid address?
* Application stack: usually small region

* Validate memory instructions

* Truncate memory references into allowed boundaries

yes no

atation signal

ﬁa-» o

Correct address into allowed boundaries
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Transparent Interface Design
* AXRAM mitigates data crashes &
* Caused by wrong fetched addresses
* Crash Skipping (CSi) mitigates flow crashes and execution stalling
* Interruptions in the control flow
e Counters of avoided crashes

* We propose a merge of these characteristics to model a single
interface that avoids these three types of crashes J
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Transparent Resilience for Approximate DRAM

* Approximate DRAM mitigates a more energy-intensive point of the
memory hierarchy

* Restarting invalid executions
* Execution crashes are easily detected by an OS
« Silent Data Corruptions (SDC) generate invalid output not easily detected

* Acceptance tests may detect invalid outputs generated by SDC



Transparent Re-execution

* Accurate re-execution
* Generates a valid and accurate output
* Nullifies the energy gains of the current instance

* Approximate re-execution
* A new invalid output may be generated

* Proposal: approximation levels
* Re-execution with lower error probability

error probability

higher
savings

lower
error

Approximation knobs
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Software-Level Addressing Scheme

 AXRAM validates memory addresses into allowed boundaries

* Virtual addressing is not as simple as direct addressing
* Truncating addresses does not validate the existence of a valid virtual page

e Searching for a valid Page Table Entry (PTE)
e Starts from the higher level of the Virtual Page Number (VPN)
e Search for a VPN with hamming distance=1 with the wrong address
* |f a correspondence is found, a new PTE is created to the same physical address



Simulation Tools and Models

* Approximate DRAM levels:
e V\oltage ranging from 1.02 to 1.11V with 10mV steps

DRAM simulation,
cycle accurate
commands

DRAM energy
behavior

cache simulation,
error injection

Memory Accesses,
number of instructions Dﬁﬂ?:ngggmand =
executed P

Energy Stats

DRAMPower

Ramulatar

Application
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Error and energy model

/ \

Error Model
1.E+00
®
. :
g 1.E-02 - °
= [ J
g 1.E-04 ° ’ [ )
e [ ]
= 1.E-06 . -
® $
1.E-08 L
1.02 1.045 1.07 1.095

Voltage
Based on data from Chang et al. (2017)



http://www.doi.org/10.1145/3084447

Frequencies of Quality and Crashes
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Acceptance Tests

Re-execution trigger
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Expected Savings

Expected Quality
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Approximate Re-execution

Re-execution methods
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Interfaces and Stack Protection
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SW-AC and SW-ACw achieve higher
savings on lower and higher vdds,

Comparison with AXRAM and CSi- ide
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On applications that have no benefits
on protecting addresses and stack,
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On higher vdds, CSi has the lower
overhead due to less protections
and SW-ACw achieves closer energy
savings
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Final Remarks

Approximate DRAM

* Lessimpact of errorin application and higher energy savings

Acceptance tests
* Detects invalid results even with SDC
* Improve detection up to 30%

Approximate Re-execution
* Up to 4p.p. of energy with negligible loss in quality

Combined interface mechanisms
 Lower overhead of CSi with lower error rate
* Higher safeguard of AxRAM with higher error rate

Transparent interfaces mechanisms
* Improve execution resilience without changes in the source code
* Increase average quality and energy savings among several approximation levels



Thanks!

Questions?

More information: http://varchc.github.io/arcs
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