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Approximate Computing

• Explores the inaccuracy tolerance of applications

• Obtain energy efficiency at the cost of errors

• Several computation can tolerate errors
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~0.97029702970297…

Original image error in 25% of the pixels error in 50% of the pixels
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about 0.97



Problem Statement

• Uncontrolled errors lead to execution crashes

• Execution crashes cause output data loss
• Wasting of computational efforts
• Reduce energy savings

• All applications have critical data

• Invalid results can be generated
• We need to recover these results
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Approximate DRAM

• Adjusting operational parameters

• Bitflips affect stored data
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Adapted from: Chang et al. (2017). Adapted from: Yarmand et al. (2019).
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Non-Transparent Interfaces

• EnerJ (Sampson et al., 2011)

• Relax (De Kruijf et al., 2012)
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@Approx class Mean {

@Precise int length_sample;

public float calculate(@Approx int[] nums) {

@Approx float total = 0.0f;

for (@Precise int i=0; i<length_sample; i++)

total += nums[i];

return total / length_sample;

}

}

int sum (int *list, int len) {

relax (rate) {

int sum = 0;

for (int i=0; i<len; i++)

total += list[i];

recover { retry; }

}

return sum;

}

https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1815961.1816026


Transparent Interfaces

• Act based on general behavior of applications

• Crash Skipping (Verdeja Herms & Li, 2019)
• Replaces instructions that would crash execution by a “nop”

• AxRAM (Fabrício Filho et al., 2020)
• Protects common critical data regions

• Application stack: usually small region

• Validate memory instructions

• Truncate memory references into allowed boundaries
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yes no

Is $r1 a valid address?

load $a, $r1

Execute instruction

Correct address into allowed boundaries

Raise an access violation signal

http://doi.org/10.1145/3299874.3317986
http://www.doi.org/10.1016/j.future.2020.07.029


Transparent Interface Design

• AxRAM mitigates data crashes
• Caused by wrong fetched addresses

• Crash Skipping (CSi) mitigates flow crashes and execution stalling
• Interruptions in the control flow

• Counters of avoided crashes

• We propose a merge of these characteristics to model a single 
interface that avoids these three types of crashes
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Transparent Resilience for Approximate DRAM

• Approximate DRAM mitigates a more energy-intensive point of the 
memory hierarchy

• Restarting invalid executions
• Execution crashes are easily detected by an OS

• Silent Data Corruptions (SDC) generate invalid output not easily detected

• Acceptance tests may detect invalid outputs generated by SDC
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Transparent Re-execution

• Accurate re-execution
• Generates a valid and accurate output

• Nullifies the energy gains of the current instance

• Approximate re-execution
• A new invalid output may be generated

• Proposal: approximation levels
• Re-execution with lower error probability
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Software-Level Addressing Scheme

• AxRAM validates memory addresses into allowed boundaries

• Virtual addressing is not as simple as direct addressing
• Truncating addresses does not validate the existence of a valid virtual page

• Searching for a valid Page Table Entry (PTE)
• Starts from the higher level of the Virtual Page Number (VPN)

• Search for a VPN with hamming distance=1 with the wrong address

• If a correspondence is found, a new PTE is created to the same physical address
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Simulation Tools and Models
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Based on data from Chang et al. (2017)

• Approximate DRAM levels:
• Voltage ranging from 1.02 to 1.11V with 10mV steps

error = 1.795e68 * exp(-155.87 * vdd)
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Frequencies of Quality and Crashes
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Acceptance Tests
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Approximate Re-execution
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correlation achieves higher 
savings and quality protecting 
application stack

sobel has a slight 
impact on energy to 
achieve higher 
quality with stack 
protection

dijkstra has no benefits 
on protecting 

application stack



Comparison with AxRAM and CSi
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On lower vdds, AxRAM achieves 
higher energy savings and SW-AC 
follows this trend and occasionally 
surpasses these benefits

On higher vdds, CSi has the lower 
overhead due to less protections 
and SW-ACw achieves closer energy 
savings

On applications that have no benefits 
on protecting addresses and stack, 
SW-ACw follows the benefits of CSi due 
to the lower overhead

SW-AC and SW-ACw achieve higher 
savings on lower and higher vdds, 
respectively, with advantages of 
AxRAM and CSi



Final Remarks
• Approximate DRAM

• Less impact of error in application and higher energy savings

• Acceptance tests
• Detects invalid results even with SDC
• Improve detection up to 30%

• Approximate Re-execution
• Up to 4p.p. of energy with negligible loss in quality

• Combined interface mechanisms
• Lower overhead of CSi with lower error rate
• Higher safeguard of AxRAM with higher error rate

• Transparent interfaces mechanisms
• Improve execution resilience without changes in the source code
• Increase average quality and energy savings among several approximation levels
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Thanks!

Questions?

More information: http://varchc.github.io/arcs

joaof@utfpr.edu.br
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