34th International Conference on Architecture of Computing Systems (ARCS)

Transparent Resilience for Approximate DRAM

João Fabrício Filho¹² Isaías Felzmann¹ Lucas Wanner¹

¹University of Campinas, Campinas-SP, Brazil ²Federal University of Technology – Paraná, Campo Mourão-PR, Brazil

científico e Tecnológico

Approximate Computing

- Explores the inaccuracy tolerance of applications
- Obtain energy efficiency at the cost of errors
- Several computation can tolerate errors

Problem Statement

- Uncontrolled errors lead to execution crashes
- Execution crashes cause output data loss
	- Wasting of computational efforts
	- Reduce energy savings
- All applications have critical data
- Invalid results can be generated
	- We need to recover these results

Approximate DRAM

Relative energy consumption on memory hierarchy

- Adjusting operational parameters
- Bitflips affect stored data

Adapted from: [Yarmand](http://www.doi.org/10.1109/TVLSI.2019.2935832) *et al*. (2019).

Fraction of erroneous data per DIMM from a single vendor

Error rate of MT47H32M8 on different refresh rates

4

Non-Transparent Interfaces

• EnerJ ([Sampson](https://doi.org/10.1145/1993498.1993518) *et al.*, 2011)

• Relax [\(De Kruijf](https://doi.org/10.1145/1815961.1816026) *et al.*, 2012)

```
@Approx class Mean {
 @Precise int length_sample;
public float calculate(@Approx int[] nums) {
  @Approx float total = 0.0f;
  for (@Precise int i=0; i<length_sample; i++)
     total += nums[i];
  return total / length_sample;
 }
```


}

Transparent Interfaces

- Act based on general behavior of applications
- Crash Skipping (Verdeja [Herms & Li, 2019\)](http://doi.org/10.1145/3299874.3317986)
	- Replaces instructions that would crash execution by a "nop"
- AxRAM ([Fabrício Filho](http://www.doi.org/10.1016/j.future.2020.07.029) *et al.*, 2020)
	- Protects common critical data regions
	- Application stack: usually small region
	- Validate memory instructions
	- Truncate memory references into allowed boundaries

Transparent Interface Design

- AxRAM mitigates data crashes
	- Caused by wrong fetched addresses
- Crash Skipping (CSi) mitigates flow crashes and execution stalling
	- Interruptions in the control flow
	- Counters of avoided crashes
- We propose a merge of these characteristics to model a single interface that avoids these three types of crashes

Transparent Resilience for Approximate DRAM

- Approximate DRAM mitigates a more energy-intensive point of the memory hierarchy
- Restarting invalid executions
	- Execution crashes are easily detected by an OS
	- Silent Data Corruptions (SDC) generate invalid output not easily detected
- Acceptance tests may detect invalid outputs generated by SDC

Transparent Re-execution

- Accurate re-execution
	- Generates a valid and accurate output
	- Nullifies the energy gains of the current instance
- Approximate re-execution
	- A new invalid output may be generated
- Proposal: approximation levels
	- Re-execution with lower error probability

Software-Level Addressing Scheme

- AxRAM validates memory addresses into allowed boundaries
- Virtual addressing is not as simple as direct addressing
	- Truncating addresses does not validate the existence of a valid virtual page
- Searching for a valid Page Table Entry (PTE)
	- Starts from the higher level of the Virtual Page Number (VPN)
	- Search for a VPN with hamming distance=1 with the wrong address
	- If a correspondence is found, a new PTE is created to the same physical address

Simulation Tools and Models

- Approximate DRAM levels:
	- Voltage ranging from 1.02 to 1.11V with 10mV steps

11

Frequencies of Quality and Crashes

resilience mechanisms tends to insist on executions with error, thus increasing invalid results without crashing

atax

without transparent resilience and the with transparent resilience

$1>95%$ $>80%$ Quality $>50%$ >0.00 $=0.00$ lflow Crashes Idata timeouts

Acceptance Tests

Approximate Re-execution

On lower vdds, AxRAM achieves higher energy savings and SW-AC follows this trend and occasionally surpasses these benefits

On applications that have no benefits on protecting addresses and stack, SW-ACw follows the benefits of CSi due to the lower overhead

On higher vdds, CSi has the lower overhead due to less protections and SW-ACw achieves closer energy savings

SW-AC and SW-ACw achieve higher

Final Remarks

- Approximate DRAM
	- Less impact of error in application and higher energy savings
- Acceptance tests
	- Detects invalid results even with SDC
	- Improve detection up to 30%
- Approximate Re-execution
	- Up to 4p.p. of energy with negligible loss in quality
- Combined interface mechanisms
	- Lower overhead of CSi with lower error rate
	- Higher safeguard of AxRAM with higher error rate
- Transparent interfaces mechanisms
	- Improve execution resilience without changes in the source code
	- Increase average quality and energy savings among several approximation levels

Thanks!

Questions?

More information: <http://varchc.github.io/arcs>

joaof@utfpr.edu.br

This work was supported by the São Paulo Research Foundation (FAPESP) grant #2018/24177-0; National Council for Scientific and Technological Development - Brazil (CNPq) grant #438445/2018-0; and Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001.

Conselho Nacional de Desenvolvimento Científico e Tecnológico

References

- Chandrasekar *et al.* (2012). DRAMPower: Open-source DRAM power & energy estimation tool. http://www.drampower.info
- Chang *et al.* (2017). Understanding Reduced-Voltage Operation in Modern DRAM Devices. *POMACS*. <https://doi.org/10.1145/3084447>
- Chang *et al.* (2016). Understanding latency variation in modern DRAM chips: Experimental characterization, analysis, and optimization. *SIGMETRICS.* <https://doi.org/10.1145/2896377.2901453>
- De Kruijf *et al.* (2010). Relax: An architectural framework for software recovery of hardware faults. *ISCA*. <https://doi.org/10.1145/1815961.1816026>
- Fabrício Filho *et al.* (2020). AxRAM: A lightweight implicit interface for approximate data access. *FGCS*, *113*, 556–570. <https://doi.org/10.1016/j.future.2020.07.029>
- Kim *et al.* (2016). Ramulator: A fast and extensible DRAM simulator. *IEEE CAL*, *15*(1), 45–49.<https://doi.org/10.1109/LCA.2015.2414456>
- Lee *et al.* (2014). Spike, a RISC-V ISA Simulator.<https://github.com/riscv/riscv-isa-sim>
- Sampson *et al.* (2011). EnerJ: Approximate data types for safe and general low-power computation. *PLDI*. <https://doi.org/10.1145/1993498.1993518>
- Verdeja Herms & Li (2019). Crash skipping: A minimal-cost framework for efficient error recovery in approximate computing environments. *GLSVLSI*.<https://doi.org/10.1145/3299874.3317986>
- Yarmand *et al.* (2020). DART: A Framework for Determining Approximation Levels in an Approximable Memory Hierarchy. *IEEE TVLSI*, *28*(1), 273–286. <https://doi.org/10.1109/TVLSI.2019.2935832>

Icons from www.thenounproject.com with creative commons license

