
Transparent Resilience for
Approximate DRAM

João Fabrício Filho¹ ²

Isaías Felzmann¹

Lucas Wanner¹

¹University of Campinas, Campinas-SP, Brazil

²Federal University of Technology – Paraná, Campo Mourão-PR, Brazil

34th International Conference on Architecture of Computing Systems (ARCS)

Approximate Computing

• Explores the inaccuracy tolerance of applications

• Obtain energy efficiency at the cost of errors

• Several computation can tolerate errors

9.8

÷ 10.1

~0.97029702970297…

Original image error in 25% of the pixels error in 50% of the pixels
2

9.8

÷ 10.1

~0.97029702970297…

about 0.97

Problem Statement

• Uncontrolled errors lead to execution crashes

• Execution crashes cause output data loss
• Wasting of computational efforts
• Reduce energy savings

• All applications have critical data

• Invalid results can be generated
• We need to recover these results

3

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

0.1 0.2 0.5 1 2 5 10 20
B

it
 E

rr
o

r
R

at
e

Refresh Cycles

Error rate of MT47H32M8 on different refresh rates

Approximate DRAM

• Adjusting operational parameters

• Bitflips affect stored data

4
Adapted from: Chang et al. (2017). Adapted from: Yarmand et al. (2019).

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.02 1.04 1.06 1.08 1.10 1.12 1.14

fr
ac

ti
o

n
 o

f
ca

ch
e

lin
es

 w
it

h
 e

rr
o

r

voltage

Fraction of erroneous data per DIMM from a single vendor

30%

3%
67%

Relative energy consumption on memory hierarchy

SRAM L1 Cache

SRAM L2 Cache

DRAM Main Memory

Adapted from: Yarmand et al. (2019).

http://www.doi.org/10.1145/3084447
http://www.doi.org/10.1145/3084447
http://www.doi.org/10.1109/TVLSI.2019.2935832

Non-Transparent Interfaces

• EnerJ (Sampson et al., 2011)

• Relax (De Kruijf et al., 2012)

5

@Approx class Mean {

@Precise int length_sample;

public float calculate(@Approx int[] nums) {

@Approx float total = 0.0f;

for (@Precise int i=0; i<length_sample; i++)

total += nums[i];

return total / length_sample;

}

}

int sum (int *list, int len) {

relax (rate) {

int sum = 0;

for (int i=0; i<len; i++)

total += list[i];

recover { retry; }

}

return sum;

}

https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1815961.1816026

Transparent Interfaces

• Act based on general behavior of applications

• Crash Skipping (Verdeja Herms & Li, 2019)
• Replaces instructions that would crash execution by a “nop”

• AxRAM (Fabrício Filho et al., 2020)
• Protects common critical data regions

• Application stack: usually small region

• Validate memory instructions

• Truncate memory references into allowed boundaries

6

yes no

Is $r1 a valid address?

load $a, $r1

Execute instruction

Correct address into allowed boundaries

Raise an access violation signal

http://doi.org/10.1145/3299874.3317986
http://www.doi.org/10.1016/j.future.2020.07.029

Transparent Interface Design

• AxRAM mitigates data crashes
• Caused by wrong fetched addresses

• Crash Skipping (CSi) mitigates flow crashes and execution stalling
• Interruptions in the control flow

• Counters of avoided crashes

• We propose a merge of these characteristics to model a single
interface that avoids these three types of crashes

7

Transparent Resilience for Approximate DRAM

• Approximate DRAM mitigates a more energy-intensive point of the
memory hierarchy

• Restarting invalid executions
• Execution crashes are easily detected by an OS

• Silent Data Corruptions (SDC) generate invalid output not easily detected

• Acceptance tests may detect invalid outputs generated by SDC

8

Transparent Re-execution

• Accurate re-execution
• Generates a valid and accurate output

• Nullifies the energy gains of the current instance

• Approximate re-execution
• A new invalid output may be generated

• Proposal: approximation levels
• Re-execution with lower error probability

9

error probability

Approximation knobs

higher
savings

lower
error

Software-Level Addressing Scheme

• AxRAM validates memory addresses into allowed boundaries

• Virtual addressing is not as simple as direct addressing
• Truncating addresses does not validate the existence of a valid virtual page

• Searching for a valid Page Table Entry (PTE)
• Starts from the higher level of the Virtual Page Number (VPN)

• Search for a VPN with hamming distance=1 with the wrong address

• If a correspondence is found, a new PTE is created to the same physical address

10

Simulation Tools and Models

11

Based on data from Chang et al. (2017)

• Approximate DRAM levels:
• Voltage ranging from 1.02 to 1.11V with 10mV steps

error = 1.795e68 * exp(-155.87 * vdd)

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.02 1.045 1.07 1.095

B
it

 E
rr

o
r

R
at

e

Voltage

Error Model

http://www.doi.org/10.1145/3084447

Frequencies of Quality and Crashes

12

atax

sobel

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08

vdd

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08

vdd

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08

vdd

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08

vdd

without transparent resilience with transparent resilience

resilience mechanisms
tends to insist on
executions with error,
thus increasing invalid
results without crashing

Acceptance Tests

13

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11

re
-e

xe
cu

ti
o

n
s

vdd

atax

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11

re
-e

xe
cu

ti
o

n
s

vdd

correlation

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11

re
-e

xe
cu

ti
o

n
s

vdd

dijkstra

0%

20%

40%

60%

80%

100%

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11

re
-e

xe
cu

ti
o

n
s

vdd

sobel

Re-execution trigger

Approximate Re-execution

14

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 S

av
in

gs

vdd

atax

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 Q

u
al

it
y

vdd

atax

0.0%

5.0%

10.0%

15.0%

20.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 S

av
in

gs
vdd

dijkstra

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 Q

u
al

it
y

vdd

dijkstra

0.0%

5.0%

10.0%

15.0%

20.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 S

av
in

gs

vdd

fft

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1.07 1.08 1.09 1.10 1.11

Ex
p

ec
te

d
 Q

u
al

it
y

vdd

fft

Re-execution methods

20.0%

10.0%

30.5%

19.3%
17.8%

30.6%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

correlation dijkstra sobel

Expected Energy Savings

stack no stack

98.6% 99.0%

74.9%

98.5%
100%

71.6%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

correlation dijkstra sobel

Expected Quality

stack no stack

Interfaces and Stack Protection

15

correlation achieves higher
savings and quality protecting
application stack

sobel has a slight
impact on energy to
achieve higher
quality with stack
protection

dijkstra has no benefits
on protecting

application stack

Comparison with AxRAM and CSi

16

0%

5%

10%

15%

20%

25%

1.07 1.08 1.09 1.10 1.11

En
er

gy
 S

av
in

gs

vdd

fft

CSi SW-ACw

15%

17%

19%

21%

23%

25%

27%

29%

31%

33%

1.07 1.08 1.09 1.10 1.11

En
er

gy
 S

av
in

gs

vdd

sobel

AxRAM SW-AC

0%

5%

10%

15%

20%

1.07 1.08 1.09 1.10 1.11

En
er

gy
 S

av
in

gs

vdd

dijkstra

CSi SW-ACw AxRAM

On lower vdds, AxRAM achieves
higher energy savings and SW-AC
follows this trend and occasionally
surpasses these benefits

On higher vdds, CSi has the lower
overhead due to less protections
and SW-ACw achieves closer energy
savings

On applications that have no benefits
on protecting addresses and stack,
SW-ACw follows the benefits of CSi due
to the lower overhead

SW-AC and SW-ACw achieve higher
savings on lower and higher vdds,
respectively, with advantages of
AxRAM and CSi

Final Remarks
• Approximate DRAM

• Less impact of error in application and higher energy savings

• Acceptance tests
• Detects invalid results even with SDC
• Improve detection up to 30%

• Approximate Re-execution
• Up to 4p.p. of energy with negligible loss in quality

• Combined interface mechanisms
• Lower overhead of CSi with lower error rate
• Higher safeguard of AxRAM with higher error rate

• Transparent interfaces mechanisms
• Improve execution resilience without changes in the source code
• Increase average quality and energy savings among several approximation levels

17

Thanks!

Questions?

More information: http://varchc.github.io/arcs

joaof@utfpr.edu.br

18

This work was supported by the São Paulo Research Foundation (FAPESP) grant #2018/24177-0; National
Council for Scientific and Technological Development - Brazil (CNPq) grant #438445/2018-0; and

Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001.

http://varchc.github.io/arcs

References

• Chandrasekar et al. (2012). DRAMPower: Open-source DRAM power & energy estimation tool. http://www.drampower.info

• Chang et al. (2017). Understanding Reduced-Voltage Operation in Modern DRAM Devices. POMACS. https://doi.org/10.1145/3084447

• Chang et al. (2016). Understanding latency variation in modern DRAM chips: Experimental characterization, analysis, and optimization.
SIGMETRICS. https://doi.org/10.1145/2896377.2901453

• De Kruijf et al. (2010). Relax: An architectural framework for software recovery of hardware faults. ISCA.
https://doi.org/10.1145/1815961.1816026

• Fabrício Filho et al. (2020). AxRAM: A lightweight implicit interface for approximate data access. FGCS, 113, 556–570.
https://doi.org/10.1016/j.future.2020.07.029

• Kim et al. (2016). Ramulator: A fast and extensible DRAM simulator. IEEE CAL, 15(1), 45–49. https://doi.org/10.1109/LCA.2015.2414456

• Lee et al. (2014). Spike, a RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim

• Sampson et al. (2011). EnerJ: Approximate data types for safe and general low-power computation. PLDI.
https://doi.org/10.1145/1993498.1993518

• Verdeja Herms & Li (2019). Crash skipping: A minimal-cost framework for efficient error recovery in approximate computing environments.
GLSVLSI. https://doi.org/10.1145/3299874.3317986

• Yarmand et al. (2020). DART: A Framework for Determining Approximation Levels in an Approximable Memory Hierarchy. IEEE TVLSI, 28(1),
273–286. https://doi.org/10.1109/TVLSI.2019.2935832

19

http://www.drampower.info/
https://doi.org/10.1145/3084447
https://doi.org/10.1145/2896377.2901453
https://doi.org/10.1145/1815961.1816026
https://doi.org/10.1016/j.future.2020.07.029
https://doi.org/10.1109/LCA.2015.2414456
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/3299874.3317986
https://doi.org/10.1109/TVLSI.2019.2935832

Icons from www.thenounproject.com with creative commons license

20

Peter van Driel, NL

Wuppdidu, DE

Anna Sophie, DE

Azam Ishaq, PK

Azam Ishaq, PK

Mavadee, TH

muhammad rosikhan anwar, ID

http://www.thenounproject.com/
https://thenounproject.com/petervandriel
https://thenounproject.com/wuppdidu
https://thenounproject.com/madeirah
https://thenounproject.com/shmai.com
https://thenounproject.com/shmai.com
https://thenounproject.com/mavadee
https://thenounproject.com/iconyou

